Lecture 03
Fahad Zafar

1.1 ARRAYS HOLD MULTIPLE VALUES

= An array is a data structure which allows a collective name to be given to a group
of elements which all have the same type.

= An individual element of an array is identified by its own unique index (or
subscript).

= An array can be thought of as a collection of numbered boxes each containing one
data item.

= Unlike regular variables, arrays can hold multiple values.

FIGURE 1-1

int count Enough memory for 1 int
12345

float price Enough memory for 1 float
56.981

char letter Enough memory for 1 char

A

FIGURE 1-2

Days: enough memory for 6 ints

| I
B B B B B B

1st 2nd 3rd 4th 5th 6th
Element Element Element Element Element Element

TABLE 1-1

Array Declaraton MURREROT PESPiement RS M
char letters|Zo]; 29 1 byte 25 bytes
short rings[100]; 100 2 bytes 200 bytes
int miles[84]; 84 4 bytes 336 bytes
float temp[12]; 12 4 bytes 48 bytes

doubledDistance[1000]; 1000 8 bytes 8000 bytes

1.2 ACCESSING ARRRY ELEMENTS

= The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

PROGRAM 1-1

// This program asks the user for the number of hours worked
// by 6 employees. It uses a 6-element int array to store the

// values.
#include <iostream.h>

volid main (void)

{

short hours|[o6];

cout << "Enter the hours worked by six employees: ";

14

cin >> hours|[O

14

cin >> hours

14

]
[1]
cin >> hours|[2];
cin >> hours|[3]

PROGRAM CONTINUES

cin >> hours[4];
cin >> hours|[5];

cout << "The hours you entered are:";

cout << " " << hours[0];
cout << " " << hours[1l];
cout << " " << hours[2];
cout << " " << hours[3];
cout << " " << hours[4];
cout << " " << hours[5] << endl;

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter the hours worked by six employees: 20 12 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

FIGURE 1-T

Subscripts

0
20

12

40

30

40

15

PROGRAM 1-2

// This program asks the user for the number of hours worked
// by 6 employees. It uses a 6-element short array to store the
// values.

#include <iostream.h>

volid main (void)

{

short hours|[06];

cout << "Enter the hours worked by six employees: ";
for (int count = 0; count < 6; count++)
cin >> hours[count];
cout << "The hours you entered are:";
for (count = 0; count < 6; count++)
cout << " " << hours[count];
cout << endl;

(=)

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter the hours worked by six employees: 20 12 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

o

PROGRAM 1-3

// This program asks the user for the number of hours worked
// by 6 employees. It uses a 6-element short array to store the
// values.

#include<iostream.h>
volid main (void)
{

short hours|[06];

cout << "Enter the hours worked by six employees.\n";

for (int count = 1; count <= 6; count++)

{
cout << "Employee " << count << ": ";
cin >> hours[count - 1];

}

cout << "The hours you entered are\n";

©

PROGRAM CONTINUES

for (count = 1; count <= 6; count++)

{

cout << "Employee " << count << ":

cout << hours|[count - 1] << endl;

’

o

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter the hours worked by six employees.
Employee 1: 20 [Enter]
Employee 2: 12 [Enter]
Employee 3: 40 [Enter]
Employee 4: 30 [Enter]
Employee 5: 30 [Enter]
Employee 6: 15 [Enter]
The hours you entered are
Employee 1: 20

Employee 2: 12

Employee 3: 40

Employee 4: 30

Employee 5: 30

Employee 6: 15

o

1.4 ARRAY INITIRLIZATION

= Arrays may be initialized when they are declared.

PROGRAM 1-5

// This program displays the number of days in each month.

// It uses a l1l2-element int array.
#include <iostream.h>

volid main (void)
{
int days[12];
days([0] = 31; // January
days[1l] = 28; // February
days[2] = 31; // March
days[3] = 30; // April
days[4] = 31; // May
[5] = 30; // June
[6] = 31; // July

days
days

(=)

PROGRAM CONTINUES

days[7] = 31; // August

days[8] = 30; // September

days[9] = 31; // October

days[10] = 30; // November

days[11] = 31; // December

for (int count = 0; count < 12; count++)

cout << "Month " << (count + 1) << " has

cout << days[count] << " days.\n";

"w.

4

o

PROGRAM OUTPUT

Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.

Month 12 has 31 days.

o

PROGRAM 1-6

// This program displays the number of days in each month.
// It uses a 1l2-element int array.

#include <iostream.h>

vold main (void)
{
int days[12] = {31, 28, 31, 30,
31, 30, 31, 31,
30, 31, 30, 31};
for (int count = 0; count < 12; count++)
{
cout << "Month " << (count + 1) << " has ";

14

cout << days[count] << " days.\n";

©

PROGRAM OUTPUT

Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.

Month 12 has 31 days.

o

PROGRAM 1-1

// This program uses an array of ten characters to store the
// first ten letters of the alphabet. The ASCII codes of the
// characters are displayed.

#include <iostream.h>

void main (void)
{
char lettersg[(10] = {'A', 'B', 'C', 'D', 'E',
'F', |G|, 'H', |I|, 'J'};

cout << "Character" << "\t" << "ASCII Code\n";
cout << "M--—————o L A T R \n":
for (int count = 0; count < 10; count++)
{

cout << letters|[count] << "\t\t";

cout << int (letters[count]) << endl;

o

PROGRAM OUTPUT

Character ASCII Code

g H DT ="M M-dogoQ o
o))
e}

o

PARTIAL ARRAY INITIALIZATION

= When an array is being initialized, C++ does not require a value for every element.

int numbers[7] = {1, 2, 4, 8};

o

PROGRAM 1-8

// This program has a partially initialized array.
#include <iostream.h>
volid main (void)

{
int numbers([7] = {1, 2, 4, 8}; // Initialize the

// first 4 elements.

cout << "Here are the contents of the array:\n";
for (int index = 0; 1index < 7; index++)

cout << numbers[index] << endl;

o

PROGRAM OUTPUT

Here are the contents of the array:

o O O o ~ DN P

IMPLICIT ARRAY SIZING

= It is possible to declare an array without specifying its size, as long as
you provide an initialization list.

float ratings|[] = {1.0, 1.5, 2.0, 2.5, 3.0};

o

INITIALIZING WITH STRINGS

= When initializing a character array with a string, simply enclose the string in
quotation marks:

char name[] = “Warren”;

o

FIGURE 1-11

Null Terminator

char Name [7]| = “Warren”: l
1rw1r ‘ |aT | Fl.—1 1],._-F ‘ |ET | F-n1 l rlll".'EIT
Name Name Name Name Name Name Name
[0] [1] [2] [3] [4] [5] [6]

©

PROGRAM 1-9

// This program displays the contents of two char arrays.

#include <iostream.h>

volid main (void)
{
char namel[] = "Holly";

char name2([] = {'W', 'a', 'r', 'r', 'e', 'n', '"\0'};

cout << namel << endl;

cout << name? << endl;

©

PROGRAM OUTPUT

Holly
Warren

1.8 PRINTING THE CONTENTS OF AN
ARRAY

= To display the contents of an array, you must use a loop to display the contents of
each element.

int arrayl[b] = { 10, 20, 30, 40, 50 };
for (int count = 0; count < 5; count++)
cout << arrayl[count] << endl;

o

1.9 ARRAYS AS FUNCTION ARGUMENTS

= To pass an array as an argument to a function, pass the name of the array.

PROGRAM 1-13

/[This program demonstrates that an array element is passed
// to a function like any other variable.
#include <iostream.h>

void ShowValue(int); // Function prototype
void main(void)
{

int collection[8] = {5, 10, 15, 20, 25, 30, 35, 40},

for (int Cycle = 0; Cycle < 8; Cycle++)
ShowValue(collection[Cycle));

o

PROGRAM CONTINUES

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

I/ Definition of function showValue. *
// This function accepts an integer argument. *
I/l The value of the argument is displayed. *

/ /************************************

void ShowValue(int Num)

{

cout << Num << " "

o

PROGRAM OUTPUT

5101520 25 30 3540

// This program demonstrates an array being passed to a function.

#include <iostream.h>

void showValues (int []):; // Function prototype

vold main (void)

{
int collection[8] = {5, 10, 15, 20, 25, 30, 35, 40};

showValues (collection); // Passing address of array collection

void showValues (int nums|[])

{
for (int index = 0; index < 8; index++)

cout << nums[index] << ;

(=)

PROGRAM OUTPUT

5101520 25 30 3540

// This program demonstrates an array being passed to a function.

#include <iostream.h>

voild showValues (int [1]); // Function prototype

void main (void)

{
int setl([8] = {5, 10, 15, 20, 25, 30, 35, 40};
int set2[8] = {2, 4, 6, 8, 10, 12, 14, 1l6};
showValues (setl) ;
cout << endl;

showValues (set?2) ;

volid showValues (int nums/|[])

{

for (int index = 0; index < 8; index++)

" "

cout << nums[index] << ;

©

PROGRAM OUTPUT

5101520 25 30 3540
246810121416

PROGRAM 1-16

// This program uses a function that can display the contents
// of an integer array of any size.

#include <iostream.h>
void showValues (int [], int); // Function prototype

vold main (void)

{

int setl[8] = {5, 10, 15, 20, 25, 30, 35, 40};
int set2[4] = {2, 4, 6, 8};
int set3[12] = {1, 2, 3, 4, 5, o, 7, 8, 9, 10, 11, 12};

showValues (setl, 8);
cout << endl;
showValues (set2, 4);
cout << endl;

showValues (set3, 12);

(=)

PROGRAN CONTINUES

//***

// Definition of function showValues. *

// This function displays the contents of the *

// array passed into nums. The value passed *
// into elements is the number of elements in *
// the nums array. *

//***

volid showValues (int nums|[], 1int elements)

{
for (int index = 0; index < elements; index++)
cout << nums[index] << " ";

o

PROGRAM OUTPUT

5101520 25 30 3540
2468
1234567891011 12

#include <iostream.h>

void doubleArray(int [], 1int);

const int arraySize = 12;

vold main (void)

{

// Function prototype

int setlarraySize] = {1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12};
cout << "The arrays values are:\n";
for (int index = 0; 1ndex < arraySize; 1ndex++)

cout << set[index] << " ";
cout << endl;
doubleArray (set, arraySize);

cout << "After calling doubleArray,

the values are:\n";

©

PROGRAM CONTINUES

for (int index = 0; index < arraySize; index++)
cout << set[index] << " ";

cout << endl;

//**

// Definition of function doubleArray. *

// This function doubles the value of each element *

// in the array passed into nums. *
// The value passed into size is the number of *
// elements in the nums array. *

//*~k~k~k**

void doubleArray(int nums[], int size)

{
for (int index = 0; index < size; index++)

nums [index] *= 2;

©

PROGRAM OUTPUT

The array values are:
1234567891011 12

After calling doubleArray, the values are:

24681012 141618 202224

o

MULTIPLE-SUBSCRIPTED ARRAYS

= Multiple subscripted arrays
= Tables with rows and columns (m by n array)

= Like matrices: specify row, then column

Row O
Row 1
Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[0][1]

a[0][2]

a[0][3]

a[1]1[0]

a[1][1]

af[1]1[2]

a[1]1[3]

a[2][0]

a[2][1]

af[2][2]

a[2][3]

Array na

me

Row subscript

Column subscript

47

MULTIPLE-SUBSCRIPTED ARRAYS

= Initialization 1 |2

int b[2][2]={{1,2},{3,4}}; 3 14
= Initializers grouped by row in braces

= If not enough, unspecified elements set to zero 1 0

int b[2][2]={{1}, {3,41}}; 3 4

= Referencing elements
= Specify row, then column
cout<<b[O0][1]:

DECLARING ARRAYS OF OBJECTS

ODeclaring arrays of objects is similar to declaring arrays of built-in types
Fraction rationals[20]; // array of 20 Fraction objects

Complex nums[50]; // an array of 50 Complex objects
Hydrant fireplugs[10]; // an array of 10 fireplugs

OEach array position is a single object

= ‘Fraction rationals[20];’ declares 20 Fraction objects, rationals[0], rationals[1], ...,
rationals[19].

INITIALIZING THE ARRAY OF
0BJECTS

dSimilar to a number array declaration.

Do nothing to use the default constructor
int x;
Fraction num;
Fraction num[4];

= To initialize in a particular way, call an explicit constructor
Int x(10);
Fraction num(10, 20);

= How to do array of objects? Need a way to specify different constructors
to different elements.

INITIALIZING THE ARRAY OF
0BJECTS

= To initialize in a particular way, call an explicit constructor
Int x(10);
Fraction num(10, 20);

= How to do array of objects? Need a way to specify different constructors
to different elements.

= Use an initializer set to give a constructor to each element
Fraction numlist[3] = {Fraction(2, 4), Fraction(5), Fraction()};
= numlist[0] is initialized with constructor Fraction(2,4);

= numlist[1] is initialized with constructor Fraction(5);
= numlist[2] is initialized with constructor Fraction();

USING THE ARRAY OF OBJECTS

= Indexing works the same as with regular arrarys
= Each object in the array is in the form of arrayName/[index];
= The dot-operator works the same as with single names.
objectName.memberName
= The objectName is in the from of an array item:
= arrayName[index].memberName

= Example
Fraction rationals[20];

rationals[2].show();

rationals[6].Input();

for (i=0;1<10;1i++) rationals[i].setval(20);
for(i=0; 1<20; 1++) rationals[i].putval = 50;

