
Lecture 03
Fahad Zafar

2

 An array is a data structure which allows a collective name to be given to a group
of elements which all have the same type.

 An individual element of an array is identified by its own unique index (or
subscript).

 An array can be thought of as a collection of numbered boxes each containing one
data item.

 Unlike regular variables, arrays can hold multiple values.

3

int count Enough memory for 1 int

12345

float price Enough memory for 1 float

56.981

char letter Enough memory for 1 char

A

4

5

Array Declaration Number of
Elements

Size of
Each Element

Size of the
Array

char letters[25]; 25 1 byte 25 bytes
short rings[100]; 100 2 bytes 200 bytes
int miles[84]; 84 4 bytes 336 bytes
float temp[12]; 12 4 bytes 48 bytes
doubledDistance[1000]; 1000 8 bytes 8000 bytes

6

 The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

7

// This program asks the user for the number of hours worked

// by 6 employees. It uses a 6-element int array to store the

// values.

#include <iostream.h>

void main(void)

{

short hours[6];

cout << "Enter the hours worked by six employees: ";

cin >> hours[0];

cin >> hours[1];

cin >> hours[2];

cin >> hours[3];

8

PROGRAM CONTINUES

cin >> hours[4];

cin >> hours[5];

cout << "The hours you entered are:";

cout << " " << hours[0];

cout << " " << hours[1];

cout << " " << hours[2];

cout << " " << hours[3];

cout << " " << hours[4];

cout << " " << hours[5] << endl;

}

9

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter the hours worked by six employees: 20 12 40 30 30 15 [Enter]

The hours you entered are: 20 12 40 30 30 15

10

11

// This program asks the user for the number of hours worked

// by 6 employees. It uses a 6-element short array to store the

// values.

#include <iostream.h>

void main(void)

{

short hours[6];

cout << "Enter the hours worked by six employees: ";

for (int count = 0; count < 6; count++)

cin >> hours[count];

cout << "The hours you entered are:";

for (count = 0; count < 6; count++)

cout << " " << hours[count];

cout << endl;

}

12

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter the hours worked by six employees: 20 12 40 30 30 15 [Enter]

The hours you entered are: 20 12 40 30 30 15

13

// This program asks the user for the number of hours worked

// by 6 employees. It uses a 6-element short array to store the

// values.

#include<iostream.h>

void main(void)

{

short hours[6];

cout << "Enter the hours worked by six employees.\n";

for (int count = 1; count <= 6; count++)

{

cout << "Employee " << count << ": ";

cin >> hours[count - 1];

}

cout << "The hours you entered are\n";

14

PROGRAM CONTINUES

for (count = 1; count <= 6; count++)

{

cout << "Employee " << count << ": ";

cout << hours[count - 1] << endl;

}

}

15

PROGRAM OUTPUT WITH EXAMPLE INPUT
Enter the hours worked by six employees.

Employee 1: 20 [Enter]

Employee 2: 12 [Enter]

Employee 3: 40 [Enter]

Employee 4: 30 [Enter]

Employee 5: 30 [Enter]

Employee 6: 15 [Enter]

The hours you entered are

Employee 1: 20

Employee 2: 12

Employee 3: 40

Employee 4: 30

Employee 5: 30

Employee 6: 15

16

 Arrays may be initialized when they are declared.

17

// This program displays the number of days in each month.

// It uses a 12-element int array.

#include <iostream.h>

void main(void)

{

int days[12];

days[0] = 31; // January

days[1] = 28; // February

days[2] = 31; // March

days[3] = 30; // April

days[4] = 31; // May

days[5] = 30; // June

days[6] = 31; // July

18

PROGRAM CONTINUES

days[7] = 31; // August

days[8] = 30; // September

days[9] = 31; // October

days[10] = 30; // November

days[11] = 31; // December

for (int count = 0; count < 12; count++)

{

cout << "Month " << (count + 1) << " has ";

cout << days[count] << " days.\n";

}

}

19

PROGRAM OUTPUT

Month 1 has 31 days.

Month 2 has 28 days.

Month 3 has 31 days.

Month 4 has 30 days.

Month 5 has 31 days.

Month 6 has 30 days.

Month 7 has 31 days.

Month 8 has 31 days.

Month 9 has 30 days.

Month 10 has 31 days.

Month 11 has 30 days.

Month 12 has 31 days.

20

// This program displays the number of days in each month.

// It uses a 12-element int array.

#include <iostream.h>

void main(void)

{

int days[12] = {31, 28, 31, 30,

31, 30, 31, 31,

30, 31, 30, 31};

for (int count = 0; count < 12; count++)

{

cout << "Month " << (count + 1) << " has ";

cout << days[count] << " days.\n";

}

}

21

PROGRAM OUTPUT

Month 1 has 31 days.

Month 2 has 28 days.

Month 3 has 31 days.

Month 4 has 30 days.

Month 5 has 31 days.

Month 6 has 30 days.

Month 7 has 31 days.

Month 8 has 31 days.

Month 9 has 30 days.

Month 10 has 31 days.

Month 11 has 30 days.

Month 12 has 31 days.

22

// This program uses an array of ten characters to store the

// first ten letters of the alphabet. The ASCII codes of the

// characters are displayed.

#include <iostream.h>

void main(void)

{

char letters[10] = {'A', 'B', 'C', 'D', 'E',

'F', 'G', 'H', 'I', 'J'};

cout << "Character" << "\t" << "ASCII Code\n";

cout << "--------" << "\t" << "----------\n";

for (int count = 0; count < 10; count++)

{

cout << letters[count] << "\t\t";

cout << int(letters[count]) << endl;

}

}

23

PROGRAM OUTPUT

Character ASCII Code

--------- ----------

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

24

 When an array is being initialized, C++ does not require a value for every element.

int numbers[7] = {1, 2, 4, 8};

25

// This program has a partially initialized array.

#include <iostream.h>

void main(void)

{

int numbers[7] = {1, 2, 4, 8}; // Initialize the

// first 4 elements.

cout << "Here are the contents of the array:\n";

for (int index = 0; index < 7; index++)

cout << numbers[index] << endl;

}

26

PROGRAM OUTPUT

Here are the contents of the array:

1

2

4

8

0

0

0

27

 It is possible to declare an array without specifying its size, as long as
you provide an initialization list.

float ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

28

 When initializing a character array with a string, simply enclose the string in
quotation marks:

char name[] = “Warren”;

29

30

// This program displays the contents of two char arrays.

#include <iostream.h>

void main(void)

{

char name1[] = "Holly";

char name2[] = {'W', 'a', 'r', 'r', 'e', 'n', '\0'};

cout << name1 << endl;

cout << name2 << endl;

}

31

PROGRAM OUTPUT

Holly

Warren

32

 To display the contents of an array, you must use a loop to display the contents of
each element.

int array[5] = { 10, 20, 30, 40, 50 };

for (int count = 0; count < 5; count++)

cout << array[count] << endl;

33

 To pass an array as an argument to a function, pass the name of the array.

34

// This program demonstrates that an array element is passed

// to a function like any other variable.

#include <iostream.h>

void ShowValue(int); // Function prototype

void main(void)

{

int collection[8] = {5, 10, 15, 20, 25, 30, 35, 40};

for (int Cycle = 0; Cycle < 8; Cycle++)

ShowValue(collection[Cycle]);

}

35

PROGRAM CONTINUES

//************************************

// Definition of function showValue. *

// This function accepts an integer argument. *

// The value of the argument is displayed. *

//************************************

void ShowValue(int Num)

{

cout << Num << " ";

}

36

PROGRAM OUTPUT

5 10 15 20 25 30 35 40

37

// This program demonstrates an array being passed to a function.

#include <iostream.h>

void showValues(int []); // Function prototype

void main(void)

{

int collection[8] = {5, 10, 15, 20, 25, 30, 35, 40};

showValues(collection); // Passing address of array collection

}

void showValues(int nums[])

{

for (int index = 0; index < 8; index++)

cout << nums[index] << " ";

}

38

PROGRAM OUTPUT

5 10 15 20 25 30 35 40

39

// This program demonstrates an array being passed to a function.

#include <iostream.h>

void showValues(int []); // Function prototype

void main(void)

{

int set1[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int set2[8] = {2, 4, 6, 8, 10, 12, 14, 16};

showValues(set1);

cout << endl;

showValues(set2);

}

void showValues(int nums[])

{

for (int index = 0; index < 8; index++)

cout << nums[index] << " ";

}

40

PROGRAM OUTPUT

5 10 15 20 25 30 35 40

2 4 6 8 10 12 14 16

41

// This program uses a function that can display the contents

// of an integer array of any size.

#include <iostream.h>

void showValues(int [], int); // Function prototype

void main(void)

{

int set1[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int set2[4] = {2, 4, 6, 8};

int set3[12] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

showValues(set1, 8);

cout << endl;

showValues(set2, 4);

cout << endl;

showValues(set3, 12);

}

42

PROGRAM CONTINUES

//***

// Definition of function showValues. *

// This function displays the contents of the *

// array passed into nums. The value passed *

// into elements is the number of elements in *

// the nums array. *

//***

void showValues(int nums[], int elements)

{

for (int index = 0; index < elements; index++)

cout << nums[index] << " ";

}

43

PROGRAM OUTPUT

5 10 15 20 25 30 35 40

2 4 6 8

1 2 3 4 5 6 7 8 9 10 11 12

44

#include <iostream.h>

void doubleArray(int [], int); // Function prototype

const int arraySize = 12;

void main(void)

{

int set[arraySize] = {1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12};

cout << "The arrays values are:\n";

for (int index = 0; index < arraySize; index++)

cout << set[index] << " ";

cout << endl;

doubleArray(set, arraySize);

cout << "After calling doubleArray, the values are:\n";

45

PROGRAM CONTINUES

for (int index = 0; index < arraySize; index++)

cout << set[index] << " ";

cout << endl;

}

//**

// Definition of function doubleArray. *

// This function doubles the value of each element *

// in the array passed into nums. *

// The value passed into size is the number of *

// elements in the nums array. *

//**

void doubleArray(int nums[], int size)

{

for (int index = 0; index < size; index++)

nums[index] *= 2;

}

46

PROGRAM OUTPUT

The array values are:

1 2 3 4 5 6 7 8 9 10 11 12

After calling doubleArray, the values are:

2 4 6 8 10 12 14 16 18 20 22 24

47

 Multiple subscripted arrays

 Tables with rows and columns (m by n array)

 Like matrices: specify row, then column

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript

Array name

Column subscript

48

 Initialization

 int b[2][2] = { { 1, 2 }, { 3, 4 } };

 Initializers grouped by row in braces

 If not enough, unspecified elements set to zero

int b[2][2] = { { 1 }, { 3, 4 } };

 Referencing elements

 Specify row, then column

cout<< b[0][1] ;

1 2

3 4

1 0

3 4

Declaring arrays of objects is similar to declaring arrays of built-in types

Fraction rationals[20]; // array of 20 Fraction objects

Complex nums[50]; // an array of 50 Complex objects

Hydrant fireplugs[10]; // an array of 10 fireplugs

Each array position is a single object

 ‘Fraction rationals[20];’ declares 20 Fraction objects, rationals[0], rationals[1], …,
rationals[19].

Similar to a number array declaration.

Do nothing to use the default constructor

int x;

Fraction num;

Fraction num[4];

 To initialize in a particular way, call an explicit constructor

Int x(10);

Fraction num(10, 20);

 How to do array of objects? Need a way to specify different constructors
to different elements.

 To initialize in a particular way, call an explicit constructor

Int x(10);

Fraction num(10, 20);

 How to do array of objects? Need a way to specify different constructors
to different elements.

 Use an initializer set to give a constructor to each element

Fraction numlist[3] = {Fraction(2, 4), Fraction(5), Fraction()};

 numlist[0] is initialized with constructor Fraction(2,4);

 numlist[1] is initialized with constructor Fraction(5);

 numlist[2] is initialized with constructor Fraction();

 Indexing works the same as with regular arrarys

 Each object in the array is in the form of arrayName[index];

 The dot-operator works the same as with single names.

objectName.memberName

 The objectName is in the from of an array item:

 arrayName[index].memberName

 Example

Fraction rationals[20];

…

rationals[2].show();

rationals[6].Input();

for (i=0; i<10; i++) rationals[i].setval(20);

for(i=0; i<20; i++) rationals[i].putval = 50;

